Software-based simulation to analyze the variation of digital modulation and atmospheric condition on the free space optic (FSO) link performance

Main Article Content

Fauza Khair
Dodi Zulherman
Rifani Auliana

Abstract

Free Space Optic (FSO) is the solution for telecommunications technology that offers high data rates, wide bandwidth, and low power consumption. However, to maximize the performance of the FSO system, the modulation used should be considered in environmental conditions. This study aims to compare the performance of the FSO communication link based on digital modulation variations used in various weather conditions, including sunny, rainy, and foggy weather. This study uses two attenuation models, namely the Kim and Kruse models, with variations in transmission distance from 500 meters to 10 kilometers. Modulation variations used include QPSK, 8-PSK, 16-PSK, and 16-QAM at 10 Gbps bitrate. The simulation is accomplished using OptiSystem 17.0 software. The study results show that sunny weather (very clear) has the best visibility compared to rain and fog conditions with an attenuation value of 0.46 dB/km on the Kim and Kruse models. QPSK modulation has the best performance with a BER value of less than 1x10-12 up to a transmission distance of 8 km in sunny weather, 3 km in rainy weather  (medium rain), and 800 m in foggy (moderate fog) weather. The 8-PSK modulation has a BER value of less than 1x10-12 with a range of 2000 m in sunny weather and 1500 m in rainy weather but does not meet the standards in foggy weather conditions. 16-PSK and 16-QAM modulation have above baseline BER values ​​during rainy and foggy conditions, but 16-QAM modulation still has a BER value of less than 1x10-3 during foggy conditions at a distance of 500 m.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
F. Khair, D. Zulherman, and R. Auliana, “Software-based simulation to analyze the variation of digital modulation and atmospheric condition on the free space optic (FSO) link performance”, INFOTEL, vol. 14, no. 3, pp. 217-223, Aug. 2022.
Section
Telecommunication