Kajian Aspek Security pada Jaringan Informasi dan Komunikasi Berbasis Visible Light Communication

Main Article Content

Syifaul Fuada

Abstract

Cahaya tampak dapat dimanfaatkan sebagai media informasi ataupun komunikasi, teknologi ini dikenal dengan istilah Visible Light Communication yang menawarkan beberapa keunggulan dibandingkan komunikasi nirkabel lainnya seperti RF dan IR. Yakni cakupan bandwidth lebih lebar dan bebas lisensi, aman bagi kesehatan manusia dan tidak terganggu interferensi elektromagnetik. Sistem VLC terdiri atas tiga bagian besar, yakni bagian transmitter dengan menggunakan devais LED, kanal yang berupa ruang bebas (free space) dan receiver dengan menggunakan devais photodetector atau image camera. Penerapan VLC berlandaskan pedoman IEEE 802.15.17 yang mana baru dirancang dalam waktu 5 tahun belakangani ini (sejak tahun 2009), meliputi meliputi layer fisik (physical layer) dan layer MAC (medium access control).  Sebagaimana teknologi komunikasi pada umumnya, VLC juga menyediakan akses security yang dibahas pada bagian layer MAC. Namun pada praktiknya masih belum begitu masif dilakukan oleh para peneliti. Hal ini sangat wajar karena mengingat VLC merupakan teknologi yang sedang dalam tahap pengembangan yang menjadikan penelitian VLC umumnya berfokus pada ‘bagaimana meningkatkan speed dari keterbatasan komponen-komponen pembangun (IC, photodiode, LED, transistor, dll) yang tersedia saat ini’. Tantangan teknologi VLC selain target peningkatan kecepatan bit-rate, mobility communication, mengurangi interference noise, menyediakan layanan multi-acces juga salah satunya adalah isu security. Makalah ini merupakan studi literature (review paper) yang didapatkan dari dokumen-dokumen hasil peneltian baik di jurnal dan conference terkait dengan praktik-praktik security VLC yang pernah dilakukan dengan skema indoor maupun outdoor.

Downloads

Download data is not yet available.

Article Details

How to Cite
FUADA, Syifaul. Kajian Aspek Security pada Jaringan Informasi dan Komunikasi Berbasis Visible Light Communication. JURNAL INFOTEL, [S.l.], v. 9, n. 1, p. 108-121, feb. 2017. ISSN 2460-0997. Available at: <http://ejournal.st3telkom.ac.id/index.php/infotel/article/view/163>. Date accessed: 27 may 2017. doi: https://doi.org/10.20895/infotel.v9i1.163.
Section
Articles

References

[1] A . Hikmaturokhman, W. Pamungkas, P.I. Setyawan, “Analisis Perhitungan Cakupan Sinyal Sistem Wcdma Pada Area Kampus Akademi Teknik Telekomunikasi Sandhy Putra Purwokerto,” JURNAL INFOTEL, Vol. 5(1), pp. 21-29, Mei 2013.
[2] C-C. Chen, W-C. Wang, J-T. Wu, H-Y. Chen, K. Liang, "Visible light communications for the implementation of internet-of-things", Opt. Eng. 55(6), 060501, June, 2016.
[3] J.P. Conti, “What you see is what you send”, Engineering & Technology, pp 66-68, November 2008, article available at:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4783247.
[4] H. Parikh, J. Chokshi, N. Gala, and T. Biradar, “Wirelessly transmitting a grayscale image using visible light,” in Proc. ICATE, pp. 1–6, 2013.
[5] National Aeronautics and Space Administration, Science Mission Directorate. Introduction to the Electromagnetic Spectrum. Retrieved [insert date - e.g. August 10, 2016], from NASA Science website: http://science.nasa.gov/ems/01_intro, 2010.
[6] S. Zhao, J. Xu, and O. Trescases, “A dimmable LED driver for Visible Light Communication (VLC) based on LLC resonant DC-DC converter operating in burst mode,” in Proc. 28th Annu. IEEE APEC Expo, pp. 2144–2150, 2013.
[7] E. Schubert, Light-Emitting Diodes. Cambridge, U.K.: Cambridge Univ. Press, 2006.
[8] D. Karunatilaka, F. Zafar, V. Kalavally, “LED Based Indoor Visible Light Communications: State of the Art,” IEEE Communication Surveys & Tutorials, Vol. 17(3), pp. 1649-1678, 2015.
[9] O. Ergul, E. Dinc, O.B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Physical Communication, Vol. 17, pp. 72 – 85, 2015.
[10] A. P. Putra, S. Fuada, Y. Aska, T. Adiono, “System-on-Chip Architecture for High-Speed Data Acquisition in Visible Light Communication System,” Proc. of the IEEE Int. Symposium on Electronics and Smart Devices (ISESD), October 2016.
[11] T. Adiono, Yulian Y. Aska, A.A. Purwita, S. Fuada, A.P. Putra, “Modeling OFDM system with Viterbi Decoder Based Visible Light Communication,” Proc. of the Int. Conf. on Electronic, Information and Communication (ICEIC), January 2017.
[12] S. Fuada, T. Adiono, A. P. Putra, Y. Aska, “A Low-cost Analog Front-End (AFE) Transmitter Designs for OFDM Visible Light Communications,” Proc. of the IEEE Int. Symposium on Electronics and Smart Devices (ISESD), October 2016.
[13] S. Fuada, A.P. Putra, Y. Aska, T. Adiono, “A First Approach to Design Mobility Function and Noise Filter in VLC System Utilizing Low-cost Analog Circuits,”unpublished.
[14] D. Wen, W. Cai, Y. Pan, “Design of Underwater Optical Communication System,” Proc. of OCEANS, pp. 1-4, June 2016.
[15] K. Sindhubala and B. Vijayalakshmi, “Review On Impact Of Ambient Light Noise Sources and Applications In Optical Wireless Communication Using LED,” Int. J. of Applied Engineering Research, Vol. 10(12), pp. 31115 – 31130, 2015.
[16] T. Adiono, S. Fuada, A.P. Putra, Y. Aska, “Desain Awal Analog Front-End Optical Transceiver untuk aplikasi Visible Light Communication,” J. Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), Vol. 5(4), pp. 319-327, November 2016.
[17] Y.Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” in Proc. 6th Int. Conf. Solid State Lighting, Vol. 6337, 2006.
[18] S. Fuada, A.P. Putra, T. Adiono. Analysis of Received Power Characteristics of Commercial Photodiodes in Indoor LOS Channel Visible Light Communication. Unpublished.
[19] L.U. Khan, “Visible light communication: Applications, architecture, standardization and research challenges,” Digital Communications and Networks, 2016. DOI: http://dx.doi.org/10.1016/j.dcan.2016.07.004i.
[20] K. Cui, G. Chen, Q. He, and Z. Xu, “Indoor optical wireless communication by ultraviolet and visible light,” Proc. SPIE Free-Space Laser Communications IX, 74640D, August 2009.
[21] IEEE, P802.15.7 – Standard for Short-Range Wireless Optical Communication, 2011.
[22] M. Noshad and M. Brandt-Pearce, “Can visible light communications provide Gb/s service?” Aug. 2013, arXiv: 1308.3217.
[23] A. Pradana, “Rancang Bangun Layer Fisik Komunikasi Cahaya Tampak Berbasis DC-OFDM dan PWM,” Master Thesis, ITB, Indonesia, 2016.
[24] S. Fuada, T. Adiono, A. P. Putra, Y. Aska, “LED Driver Design for Indoor Lighting and Low-rate Data Transmission Purpose,” Unpublished.
[25] C-W. Chow, Y. Liu, C-H. Yeh, C-Y Chen, C-N. Lin, D-Z. Hsu, “Secure communication zone for white-light LED visible light communication,” Optics Communications, Vol. 344, pp. 81–85, 2015.
[26] U.H. Jayo, A.S.K. Mammu and I.D. Iglesia, “Reliable Communication in Cooperative Ad hoc Networks,” [Online] available at http://www.intechopen.com/books/contemporary-issues-in-wireless-communications/reliable-communication-in-cooperative-ad-hoc-networks.
[27] J-H. Yoo, J-S. Jang, J. K. Kwon, H-C. Kim, D-W. Song and S-Y. Jung, “Demonstration of Vehicular Visible Light Communication Based on LED Headlamp,” Int. J. of Automotive Technology, Vol. 17(2), pp. 347?352, 2016.
[28] W. Viriyasitavat, S-H Yu and H-M Tsai, “Short Paper: Channel Model for Visible Light Communications Using Off-the-shelf Scooter Taillight,” Proc. of 2013 IEEE Vehicular Networking Conference (VNC), pp. 170-173, 2013.
[29] Visible Light Communication, [Online] Available at:
https://www.disneyresearch.com/project/visible-light-communication/
[30] S. Ucar, S.C. Ergen, O. Ozkasap, D. Tsonev, H. Burchardt, “SecVLC: Secure Visible Light Communication for Military Vehicular Networks,” Proc. of the 14th ACM Int. Symposium on Mobility Management and Wireless Access (MobiWac), pp. 123-129, November 2016.
[31] A. Mostafa, L. Lampe, “Physical-Layer Security for Indoor Visible Light Communications,” Proc. of IEEE ICC Optical Networks and Systems, pp. 3342-3347, 2014.
[32] G.J. Blinowski, “Practical Aspects of Physical and MAC Layer Security in Visible Light Communications Systems,” Int. J. of Electronics and Telecomunications, Vol. 62(1), pp. 7-13, 2016.
[33] J. Classen, D. Steinmetzer, M. Hollick, “Opportunities and pitfalls in securing visible light communication on the physical layer,” Proc. of the 3rd Workshop on Visible Light Communication Systems (VLCS), pp. 19-24, October 2016.
[34] I.M. Gracia, A.M.R. Aguilera, V. Guerra, J. Rabadan, “Data Sniffing Over an Open VLC Channel,” Proc. of the 10th Int. Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016
[35] J. Classen, J. Chen, D. Steinmetzer, M. Hollick, E. Knightly, “The Spy Next Door: Eavesdropping on High Throughput Visible Light Communications,” Proc. of the 2nd Int. Workshop on Visible Light Communications Systems (VLCS), pp. 9 -14, 2015.
[36] A. Mukherjee, “Secret-Key Agreement for Security in Multi-Emitter Visible Light Communication Systems,” IEEE Communications Letters, Vol. 20(7), pp. 1361 - 1364, July 2016.
[37] A. Hilmia, K. Hewage, A. Varshney, C. Rohner, T. Voigt, “Poster Abstract: BouKey: Location-Based Key Sharing Using Visible Light Communication,” Proc. of the 15th ACM/IEEE Int. Conf. on Information Processing in Sensor Networks (IPSN), April 2016.
[38] Y. Liu et. al, “Light Encryption Scheme Using Light-Emitting Diode and Camera Image Sensor,” IEEE Photonics J., Vol. 8(1), February 2016.
[39] F. Mousa1 et. al, “Investigation of Data Encryption Impact on Broadcasting Visible Light Communications,”Proc. of the 9th Int. Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Oktober 2016.
[40] R. Munir, “Algoritma RSA dan ElGamal, [Online], Available at
“http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/Algoritma%20RSA.pdf,” 2004.